The Secret to Vibrant, Youthful, Glowing Skin At Any Age

Press the Reset Button on Youth and Rejuvenate Your Skin From Within

With Our Revolutionary Science-Powered Premium Collagen and Anti-Aging Blend

BUY NOW

Frequently Asked Questions

No.

The collagen in Tranont GLOW is sourced from premium, pasture-raised, grass-fed beef.

Unfortunately, many vegan 'collagen supplements' actually contain zero collagen and are instead more accurately described as 'collagen boosters' because they contain only nutrients that assist in natural collagen production.

While there are a handful of vegan collagen supplements that do exist, these are made from genetically modified yeast and bacteria which have been 'injected' with four human genes for collagen production, making them unsuitable for many health-conscious people.

It should also be noted that the extensive scientific research that has been conducted on the incredible benefits of collagen has focused almost exclusively on collagen derived from animal sources.

Yes

Yes

Yes

While many other collagen supplements are packed full of collagen-damaging refined sugar, Tranont GLOW is made using only natural flavors and the zero-calorie, natural sweetener Stevia Rebaudiana-Leaf extract.

Which means you can enjoy a sweet-tasting supplement without any collagen-destroying drawbacks.

Yes

Absolutely.

Although genetics plays a role, collagen decline generally begins in our late teens or twenties and only starts to become visible later.

By supplementing with collagen early, it becomes easier to restore collagen depletion, stimulate your body's natural collagen production, and maintain your youthful inner and outer glow.

The collagen molecule is far too large to be absorbed through the skin.

Because of this, it's scientifically impossible for topically-applied collagen (in skin creams and serums) to penetrate through the dermis.

Some board-certified physicians offer a cosmetic procedure where collagen is injected directly under the skin.

While this does appear to be effective in boosting levels of collagen in the skin, there are a number of possible side effects including skin redness, swelling, bleeding, bruising, possible scarring and, in rare cases, the creation of wounds.

Remember, collagen is the 'glue' that holds together not just our skin but also our joints, bones, muscles, tendons, ligaments, cartilage, blood vessels, and organs...which is why we recommend Tranont's GLOW liquid supplement to experience the full whole-body benefit of a collagen boost.

Collagen is a non-toxic, dietary supplement with a solid safety profile.

Of course, if you have an allergy to any of the ingredients contained in Tranont GLOW, you should consult your healthcare provider before taking it.

In some cases, taking a larger than recommended dose can result in an upset stomach or a feeling of 'overfullness'

Absolutely.

Collagen is equally as important for men and women, and both experience the 'collagen collapse' as a natural part of aging.

This is why GLOW is absolutely perfect for both men and women who want to refresh, revitalize, and rejuvenate not just their skin but their entire body!

Fully replenishing your lost collagen and stimulating natural collagen production doesn't happen overnight.

Results vary from person to person based on genetics, health, diet, exercise, but you should expect to begin seeing visible results after 4 weeks of regular use, and within 8-12 weeks experience most of the benefits such as wrinkle reduction and significant improvement of your skin, nails, and hair.

Some benefits, specifically the minimization of the appearance of cellulite, ar generally experienced only through prolonged use.

Tranont GLOW is formulated using a revolutionary Triple-Action collagen-boosting blend.

Our product...

  1. Restores your body's depleted levels of collagen and stimulates your body's natural collagen production via 100% Bio-Available Hydrolyzed Collagen Peptides
  2. Protects collagen from free radical damage using our Superfood Antioxidant Blend
  3. Provides the nutrients you need to enhance your collagen production and improve the health of your skin, hair, nails, joints, muscles, bones, and more

And, unlike other collagen supplements, Tranont GLOW contains no collagen-destroying sugar (instead, we use zero-calorie, stevia leaf extract)

Tranont GLOW was created in partnership with our scientific advisory board, to bring you the best, healthiest, and most natural Collagen supplement.

For additional information on the role of collagen in the body and the efficacy of collagen supplementation—along with the other ingredients in our proprietary blend—you can review the 'references' below to explore the peer-reviewed science that powers GLOW.

Tranont GLOW is a liquid collagen drink.

For optimal results, we recommend taking your full two-tablespoon daily dose all at once, preferably in the evening, with or without food

Each two-tablespoon serving of GLOW contains a full 11 grams of Premium Collagen Peptides

For best results, we recommend taking two tablespoons of GLOW liquid supplement drink each day.

(However, with even just one spoonful per day, you can see benefits to your skin)

No!

Tranont GLOW is not a collagen powder. Instead, it's a liquid supplement ready to drink straight out of the bottle.

That means no fussing with blenders, no struggling with trying to get it to dissolve, and absolutely no lumps.

Yes

Return your bottle of Tranont GLOW unopened within 30 days of purchase for a full refund (minus shipping and handling and a 10% restocking fee)

For the absolute best results, in addition to taking your Tranont GLOW supplement daily, you may want to limit the environmental and lifestyle choices that damage or disrupt collagen.

That means

  • maintaining healthy amounts of exposure to the sun (while using sunscreen to protect from UV rays)
  • limiting your blue light exposure
  • avoiding cigarette and tobacco smoke and other pollutants
  • eating a healthy, balanced diet that is low in inflammatories like refined sugar
  • limiting alcohol consumption
  • partaking in regular exercise
  • managing stress

Deshmukh SN, Dive AM, Moharil R, Munde P. Enigmatic insight into collagen. J Oral Maxillofac Pathol. 2016 May-Aug;20(2):276-83. doi: 10.4103/0973-029X.185932. PMID: 27601823; PMCID: PMC4989561. https://pubmed.ncbi.nlm.nih.gov/27601823/

Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011 Jan 1;3(1):a004978. doi: 10.1101/cshperspect.a004978. PMID: 21421911; PMCID: PMC3003457. https://pubmed.ncbi.nlm.nih.gov/21421911/

Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Section 22.3, Collagen: The Fibrous Proteins of the Matrix. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21582/

Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17(3):319-36. doi: 10.1007/s00198-005-2035-9. Epub 2005 Dec 9. PMID: 16341622. https://pubmed.ncbi.nlm.nih.gov/16341622/

Tzaphlidou M. Bone architecture: collagen structure and calcium/phosphorus maps. J Biol Phys. 2008 Apr;34(1-2):39-49. doi: 10.1007/s10867-008-9115-y. Epub 2008 Oct 15. PMID: 19669491; PMCID: PMC2577747. https://pubmed.ncbi.nlm.nih.gov/19669491/

León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed Collagen-Sources and Applications. Molecules. 2019 Nov 7;24(22):4031. doi: 10.3390/molecules24224031. PMID: 31703345; PMCID: PMC6891674. https://pubmed.ncbi.nlm.nih.gov/31703345/

Skov K, Oxfeldt M, Thøgersen R, Hansen M, Bertram HC. Enzymatic Hydrolysis of a Collagen Hydrolysate Enhances Postprandial Absorption Rate-A Randomized Controlled Trial. Nutrients. 2019 May 13;11(5):1064. doi: 10.3390/nu11051064. PMID: 31086034; PMCID: PMC6566347. https://pubmed.ncbi.nlm.nih.gov/31086034/

Alcock RD, Shaw GC, Tee N, Burke LM. Plasma Amino Acid Concentrations After the Ingestion of Dairy and Collagen Proteins, in Healthy Active Males. Front Nutr. 2019 Oct 15;6:163. doi: 10.3389/fnut.2019.00163. PMID: 31681789; PMCID: PMC6803522. https://pubmed.ncbi.nlm.nih.gov/31681789/

Bello AE, Oesser S. Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Curr Med Res Opin. 2006 Nov;22(11):2221-32. doi: 10.1185/030079906X148373. PMID: 17076983. https://pubmed.ncbi.nlm.nih.gov/17076983/

Van Vijven JP, Luijsterburg PA, Verhagen AP, van Osch GJ, Kloppenburg M, Bierma-Zeinstra SM. Symptomatic and chondroprotective treatment with collagen derivatives in osteoarthritis: a systematic review. Osteoarthritis Cartilage. 2012 Aug;20(8):809-21. doi: 10.1016/j.joca.2012.04.008. Epub 2012 Apr 17. PMID: 22521757. https://pubmed.ncbi.nlm.nih.gov/22521757/

Rong YH, Zhang GA, Wang C, Ning FG. [Quantification of type I and III collagen content in normal human skin in different age groups]. Zhonghua Shao Shang Za Zhi. 2008 Feb;24(1):51-3. Chinese. PMID: 18512563. https://pubmed.ncbi.nlm.nih.gov/18512563/

Telang PS. Vitamin C in dermatology. Indian Dermatol Online J. 2013 Apr;4(2):143-6. doi: 10.4103/2229-5178.110593. PMID: 23741676; PMCID: PMC3673383. https://pubmed.ncbi.nlm.nih.gov/23741676/

Knuutinen A, Kokkonen N, Risteli J, Vähäkangas K, Kallioinen M, Salo T, Sorsa T, Oikarinen A. Smoking affects collagen synthesis and extracellular matrix turnover in human skin. Br J Dermatol. 2002 Apr;146(4):588-94. doi: 10.1046/j.1365-2133.2002.04694.x. PMID: 11966688. https://pubmed.ncbi.nlm.nih.gov/11966688/

Okada, Haruko C. M.D.; Alleyne, Brendan B.S.; Varghai, Kaveh; Kinder, Kimberly M.D.; Guyuron, Bahman M.D. Facial Changes Caused by Smoking, Plastic and Reconstructive Surgery: November 2013 - Volume 132 - Issue 5 - p 1085-1092 doi: 10.1097/PRS.0b013e3182a4c20a. https://journals.lww.com/plasreconsurg/Abstract/2013/11000/Facial_Changes_Caused_by_Smoking___A_Comparison.10.aspx

Jariashvili K, Madhan B, Brodsky B, Kuchava A, Namicheishvili L, Metreveli N. UV damage of collagen: insights from model collagen peptides. Biopolymers. 2012 Mar;97(3):189-98. doi: 10.1002/bip.21725. Epub 2011 Oct 15. PMID: 22002434; PMCID: PMC3299808. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299808/

Danby FW. Nutrition and aging skin: sugar and glycation. Clin Dermatol. 2010 Jul-Aug;28(4):409-11. doi: 10.1016/j.clindermatol.2010.03.018. PMID: 20620757. https://pubmed.ncbi.nlm.nih.gov/20620757/

Bosch R, Philips N, Suárez-Pérez JA, Juarranz A, Devmurari A, Chalensouk-Khaosaat J, González S. Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants (Basel). 2015 Mar 26;4(2):248-68. doi: 10.3390/antiox4020248. PMID: 26783703; PMCID: PMC4665475. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665475/

Panwar P, Lamour G, Mackenzie NC, Yang H, Ko F, Li H, Brömme D. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications. J Biol Chem. 2015 Sep 18;290(38):23291-306. doi: 10.1074/jbc.M115.644310. Epub 2015 Jul 29. PMID: 26224630; PMCID: PMC4645626. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4645626/

Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol. 2012 Jul 1;4(3):308-19. doi: 10.4161/derm.22804. PMID: 23467476; PMCID: PMC3583892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583892/

Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol. 2006 Jun;168(6):1861-8. doi: 10.2353/ajpath.2006.051302. PMID: 16723701; PMCID: PMC1606623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1606623/

Marcos-Garcés V, Molina Aguilar P, Bea Serrano C, García Bustos V, Benavent Seguí J, Ferrández Izquierdo A, Ruiz-Saurí A. Age-related dermal collagen changes during development, maturation and ageing - a morphometric and comparative study. J Anat. 2014 Jul;225(1):98-108. doi: 10.1111/joa.12186. Epub 2014 Apr 23. PMID: 24754576; PMCID: PMC4089350. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089350/

Drake MT, Clarke BL, Lewiecki EM. The Pathophysiology and Treatment of Osteoporosis. Clin Ther. 2015 Aug;37(8):1837-50. doi: 10.1016/j.clinthera.2015.06.006. Epub 2015 Jul 7. PMID: 26163201. https://pubmed.ncbi.nlm.nih.gov/26163201/

Avila Rodríguez MI, Rodríguez Barroso LG, Sánchez ML. Collagen: A review on its sources and potential cosmetic applications. J Cosmet Dermatol. 2018 Feb;17(1):20-26. doi: 10.1111/jocd.12450. Epub 2017 Nov 16. PMID: 29144022. https://pubmed.ncbi.nlm.nih.gov/29144022/

Vollmer DL, West VA, Lephart ED. Enhancing Skin Health: By Oral Administration of Natural Compounds and Minerals with Implications to the Dermal Microbiome. Int J Mol Sci. 2018 Oct 7;19(10):3059. doi: 10.3390/ijms19103059. PMID: 30301271; PMCID: PMC6213755. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213755/

Song H, Zhang S, Zhang L, Li B. Effect of Orally Administered Collagen Peptides from Bovine Bone on Skin Aging in Chronologically Aged Mice. Nutrients. 2017 Nov 3;9(11):1209. doi: 10.3390/nu9111209. PMID: 29099747; PMCID: PMC5707681. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707681/

Asserin J, Lati E, Shioya T, Prawitt J. The effect of oral collagen peptide supplementation on skin moisture and the dermal collagen network: evidence from an ex vivo model and randomized, placebo-controlled clinical trials. J Cosmet Dermatol. 2015 Dec;14(4):291-301. doi: 10.1111/jocd.12174. Epub 2015 Sep 12. PMID: 26362110. https://pubmed.ncbi.nlm.nih.gov/26362110/

Zdzieblik D, Oesser S, Baumstark MW, Gollhofer A, König D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomised controlled trial. Br J Nutr. 2015 Oct 28;114(8):1237-45. doi: 10.1017/S0007114515002810. Epub 2015 Sep 10. PMID: 26353786; PMCID: PMC4594048. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594048/

Liu D, Nikoo M, Boran G, Zhou P, Regenstein JM. Collagen and gelatin. Annu Rev Food Sci Technol. 2015;6:527-57. doi: 10.1146/annurev-food-031414-111800. Epub 2015 Mar 23. PMID: 25884286. https://pubmed.ncbi.nlm.nih.gov/25884286/

M.C. Gómez-Guillén, B. Giménez, M.E. López-Caballero, M.P. Montero, Functional and bioactive properties of collagen and gelatin from alternative sources: A review, Food Hydrocolloids, Volume 25, Issue 8, 2011, Pages 1813-1827, ISSN 0268-005X, https://doi.org/10.1016/j.foodhyd.2011.02.007. https://www.sciencedirect.com/science/article/pii/S0268005X11000427

Paul C, Leser S, Oesser S. Significant Amounts of Functional Collagen Peptides Can Be Incorporated in the Diet While Maintaining Indispensable Amino Acid Balance. Nutrients. 2019 May 15;11(5):1079. doi: 10.3390/nu11051079. PMID: 31096622; PMCID: PMC6566836. https://pubmed.ncbi.nlm.nih.gov/31096622/

Zdzieblik, D., Oesser, S., Baumstark, M., Gollhofer, A., & König, D. (2015). Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: A randomised controlled trial. British Journal of Nutrition, 114(8), 1237-1245. doi:10.1017/S0007114515002810. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/collagen-peptide-supplementation-in-combination-with-resistance-training-improves-body-composition-and-increases-muscle-strength-in-elderly-sarcopenic-men-a-randomised-controlled-trial/9426E375742D094F91029FD0364815C4

Choi FD, Sung CT, Juhasz ML, Mesinkovsk NA. Oral Collagen Supplementation: A Systematic Review of Dermatological Applications. J Drugs Dermatol. 2019 Jan 1;18(1):9-16. PMID: 30681787. https://pubmed.ncbi.nlm.nih.gov/30681787/

Kim DU, Chung HC, Choi J, Sakai Y, Lee BY. Oral Intake of Low-Molecular-Weight Collagen Peptide Improves Hydration, Elasticity, and Wrinkling in Human Skin: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients. 2018 Jun 26;10(7):826. doi: 10.3390/nu10070826. PMID: 29949889; PMCID: PMC6073484. https://pubmed.ncbi.nlm.nih.gov/29949889/

Proksch E, Schunck M, Zague V, Segger D, Degwert J, Oesser S. Oral intake of specific bioactive collagen peptides reduces skin wrinkles and increases dermal matrix synthesis. Skin Pharmacol Physiol. 2014;27(3):113-9. doi: 10.1159/000355523. Epub 2013 Dec 24. PMID: 24401291. https://pubmed.ncbi.nlm.nih.gov/24401291/

Lupu MA, Gradisteanu Pircalabioru G, Chifiriuc MC, Albulescu R, Tanase C. Beneficial effects of food supplements based on hydrolyzed collagen for skin care (Review). Exp Ther Med. 2020 Jul;20(1):12-17. doi: 10.3892/etm.2019.8342. Epub 2019 Dec 17. PMID: 32508986; PMCID: PMC7271718. https://pubmed.ncbi.nlm.nih.gov/32508986/

Barati M, Jabbari M, Navekar R, Farahmand F, Zeinalian R, Salehi-Sahlabadi A, Abbaszadeh N, Mokari-Yamchi A, Davoodi SH. Collagen supplementation for skin health: A mechanistic systematic review. J Cosmet Dermatol. 2020 Nov;19(11):2820-2829. doi: 10.1111/jocd.13435. Epub 2020 May 21. PMID: 32436266. https://pubmed.ncbi.nlm.nih.gov/32436266/

Czajka A, Kania EM, Genovese L, Corbo A, Merone G, Luci C, Sibilla S. Daily oral supplementation with collagen peptides combined with vitamins and other bioactive compounds improves skin elasticity and has a beneficial effect on joint and general wellbeing. Nutr Res. 2018 Sep;57:97-108. doi: 10.1016/j.nutres.2018.06.001. Epub 2018 Jun 9. PMID: 30122200. https://pubmed.ncbi.nlm.nih.gov/30122200/

Ohara H, Ichikawa S, Matsumoto H, Akiyama M, Fujimoto N, Kobayashi T, Tajima S. Collagen-derived dipeptide, proline-hydroxyproline, stimulates cell proliferation and hyaluronic acid synthesis in cultured human dermal fibroblasts. J Dermatol. 2010 Apr;37(4):330-8. doi: 10.1111/j.1346-8138.2010.00827.x. PMID: 20507402. https://pubmed.ncbi.nlm.nih.gov/20507402/

Proksch E, Segger D, Degwert J, Schunck M, Zague V, Oesser S: Oral Supplementation of Specific Collagen Peptides Has Beneficial Effects on Human Skin Physiology: A Double-Blind, Placebo-Controlled Study. Skin Pharmacol Physiol 2014;27:47-55. doi: 10.1159/000351376. https://www.karger.com/Article/Abstract/351376#

Schunck M, Zague V, Oesser S, Proksch E. Dietary Supplementation with Specific Collagen Peptides Has a Body Mass Index-Dependent Beneficial Effect on Cellulite Morphology. J Med Food. 2015 Dec;18(12):1340-8. doi: 10.1089/jmf.2015.0022. Epub 2015 Nov 12. PMID: 26561784; PMCID: PMC4685482. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685482/

Borumand M, Sibilla S. Effects of a nutritional supplement containing collagen peptides on skin elasticity, hydration and wrinkles. J Med Nutr Nutraceut [serial online] 2015 [cited 2021 Oct 18];4:47-53. https://www.jmnn.org/text.asp?2015/4/1/47/146161

Clark KL, Sebastianelli W, Flechsenhar KR, Aukermann DF, Meza F, Millard RL, Deitch JR, Sherbondy PS, Albert A. 24-Week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain. Curr Med Res Opin. 2008 May;24(5):1485-96. doi: 10.1185/030079908x291967. Epub 2008 Apr 15. PMID: 18416885. https://pubmed.ncbi.nlm.nih.gov/18416885/

Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019 Jan 26;393(10169):364-376. doi: 10.1016/S0140-6736(18)32112-3. PMID: 30696576. https://pubmed.ncbi.nlm.nih.gov/30696576/

Guillerminet F, Fabien-Soulé V, Even PC, Tomé D, Benhamou CL, Roux C, Blais A. Hydrolyzed collagen improves bone status and prevents bone loss in ovariectomized C3H/HeN mice. Osteoporos Int. 2012 Jul;23(7):1909-19. doi: 10.1007/s00198-011-1788-6. Epub 2011 Sep 17. PMID: 21927918. https://pubmed.ncbi.nlm.nih.gov/21927918/

Han X, Xu Y, Wang J, Pei X, Yang R, Li N, Li Y. Effects of cod bone gelatin on bone metabolism and bone microarchitecture in ovariectomized rats. Bone. 2009 May;44(5):942-7. doi: 10.1016/j.bone.2008.12.005. Epub 2008 Dec 14. PMID: 19124090. https://pubmed.ncbi.nlm.nih.gov/19124090/

König D, Oesser S, Scharla S, Zdzieblik D, Gollhofer A. Specific Collagen Peptides Improve Bone Mineral Density and Bone Markers in Postmenopausal Women-A Randomized Controlled Study. Nutrients. 2018 Jan 16;10(1):97. doi: 10.3390/nu10010097. PMID: 29337906; PMCID: PMC5793325. https://pubmed.ncbi.nlm.nih.gov/29337906/

Li Y, Zhao Y, Sun X, Qu X. [Prevention and therapeutic effects of sika deer velvet collagen hydrolysate on osteoporosis in rats by retinoic acid]. Zhongguo Zhong Yao Za Zhi. 2010 Mar;35(6):759-62. Chinese. doi: 10.4268/cjcmm20100622. PMID: 20545204. https://pubmed.ncbi.nlm.nih.gov/20545204/

Liu J, Zhang B, Song S, Ma M, Si S, Wang Y, Xu B, Feng K, Wu J, Guo Y. Bovine collagen peptides compounds promote the proliferation and differentiation of MC3T3-E1 pre-osteoblasts. PLoS One. 2014 Jun 13;9(6):e99920. doi: 10.1371/journal.pone.0099920. PMID: 24926875; PMCID: PMC4057461. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057461/

Liu J, Wang Y, Song S, Wang X, Qin Y, Si S, Guo Y. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats. PLoS One. 2015 Aug 10;10(8):e0135019. doi: 10.1371/journal.pone.0135019. PMID: 26258559; PMCID: PMC4530891. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530891/

Takeda S, Park JH, Kawashima E, Ezawa I, Omi N. Hydrolyzed collagen intake increases bone mass of growing rats trained with running exercise. J Int Soc Sports Nutr. 2013 Aug 6;10(1):35. doi: 10.1186/1550-2783-10-35. PMID: 23914839; PMCID: PMC3750261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750261/

Moskowitz RW. Role of collagen hydrolysate in bone and joint disease. Semin Arthritis Rheum. 2000 Oct;30(2):87-99. doi: 10.1053/sarh.2000.9622. PMID: 11071580. https://pubmed.ncbi.nlm.nih.gov/11071580/

Cefalu CA. Is bone mineral density predictive of fracture risk reduction? Curr Med Res Opin. 2004 Mar;20(3):341-9. doi: 10.1185/030079903125003062. PMID: 15025843. https://pubmed.ncbi.nlm.nih.gov/15025843/

Carbone JW, Pasiakos SM. Dietary Protein and Muscle Mass: Translating Science to Application and Health Benefit. Nutrients. 2019 May 22;11(5):1136. doi: 10.3390/nu11051136. PMID: 31121843; PMCID: PMC6566799. https://pubmed.ncbi.nlm.nih.gov/31121843/

Jendricke P, Centner C, Zdzieblik D, Gollhofer A, König D. Specific Collagen Peptides in Combination with Resistance Training Improve Body Composition and Regional Muscle Strength in Premenopausal Women: A Randomized Controlled Trial. Nutrients. 2019 Apr 20;11(4):892. doi: 10.3390/nu11040892. PMID: 31010031; PMCID: PMC6521629. https://pubmed.ncbi.nlm.nih.gov/31010031/

Oertzen-Hagemann V, Kirmse M, Eggers B, Pfeiffer K, Marcus K, de Marées M, Platen P. Effects of 12 Weeks of Hypertrophy Resistance Exercise Training Combined with Collagen Peptide Supplementation on the Skeletal Muscle Proteome in Recreationally Active Men. Nutrients. 2019 May 14;11(5):1072. doi: 10.3390/nu11051072. PMID: 31091754; PMCID: PMC6566884. https://pubmed.ncbi.nlm.nih.gov/31091754/

Baum JI, Kim IY, Wolfe RR. Protein Consumption and the Elderly: What Is the Optimal Level of Intake? Nutrients. 2016 Jun 8;8(6):359. doi: 10.3390/nu8060359. PMID: 27338461; PMCID: PMC4924200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924200/

Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011 Sep;44(3):318-31. doi: 10.1002/mus.22094. PMID: 21949456; PMCID: PMC3177172. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177172/

Yang FC, Zhang Y, Rheinstädter MC. The structure of people's hair. PeerJ. 2014 Oct 14;2:e619. doi: 10.7717/peerj.619. PMID: 25332846; PMCID: PMC4201279. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201279/

Bin Wang, Wen Yang, Joanna McKittrick, Marc André Meyers, Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration, Progress in Materials Science, Volume 76, 2016, Pages 229-318, ISSN 0079 6425, https://doi.org/10.1016/j.pmatsci.2015.06.001.https://www.sciencedirect.com/science/article/pii/S0079642515000596

Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009 May;37(1):1-17. doi: 10.1007/s00726-009-0269-0. Epub 2009 Mar 20. PMID: 19301095. https://pubmed.ncbi.nlm.nih.gov/19301095/

Tessari P, Lante A, Mosca G. Essential amino acids: master regulators of nutrition and environmental footprint? Sci Rep. 2016 May 25;6:26074. doi: 10.1038/srep26074. PMID: 27221394; PMCID: PMC4897092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897092/

Li P, Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids. 2018 Jan;50(1):29-38. doi: 10.1007/s00726-017-2490-6. Epub 2017 Sep 20. PMID: 28929384. https://pubmed.ncbi.nlm.nih.gov/28929384/

Trüeb RM. The impact of oxidative stress on hair. Int J Cosmet Sci. 2015 Dec;37 Suppl 2:25-30. doi: 10.1111/ics.12286. PMID: 26574302. https://pubmed.ncbi.nlm.nih.gov/26574302/

Abedin MZ, Karim AA, Latiff AA, Gan CY, Ghazali FC, Barzideh Z, Ferdosh S, Akanda MJ, Zzaman W, Karim MR, Sarker MZ. Biochemical and radical-scavenging properties of sea cucumber (Stichopus vastus) collagen hydrolysates. Nat Prod Res. 2014;28(16):1302-5. doi: 10.1080/14786419.2014.900617. Epub 2014 Mar 27. PMID: 24670209. https://pubmed.ncbi.nlm.nih.gov/24670209/

Wang B, Wang YM, Chi CF, Luo HY, Deng SG, Ma JY. Isolation and characterization of collagen and antioxidant collagen peptides from scales of croceine croaker (Pseudosciaena crocea). Mar Drugs. 2013 Nov 21;11(11):4641-61. doi: 10.3390/md11114641. PMID: 24284428; PMCID: PMC3853751. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853751/

Zhang L, Zheng Y, Cheng X, Meng M, Luo Y, Li B. The anti-photoaging effect of antioxidant collagen peptides from silver carp (Hypophthalmichthys molitrix) skin is preferable to tea polyphenols and casein peptides. Food Funct. 2017 Apr 19;8(4):1698-1707. doi: 10.1039/c6fo01499b. PMID: 28266664. https://pubmed.ncbi.nlm.nih.gov/28266664/

Rahmani W, Abbasi S, Hagner A, Raharjo E, Kumar R, Hotta A, Magness S, Metzger D, Biernaskie J. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev Cell. 2014 Dec 8;31(5):543-58. doi: 10.1016/j.devcel.2014.10.022. Epub 2014 Nov 26. PMID: 25465495. https://pubmed.ncbi.nlm.nih.gov/25465495/

Yang CC, Cotsarelis G. Review of hair follicle dermal cells. J Dermatol Sci. 2010 Jan;57(1):2-11. doi: 10.1016/j.jdermsci.2009.11.005. PMID: 20022473; PMCID: PMC2818774. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818774/

Matsumura H, Mohri Y, Binh NT, Morinaga H, Fukuda M, Ito M, Kurata S, Hoeijmakers J, Nishimura EK. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science. 2016 Feb 5;351(6273):aad4395. doi: 10.1126/science.aad4395. Epub 2016 Feb 4. PMID: 26912707. https://pubmed.ncbi.nlm.nih.gov/26912707/

Borumand M, Sibilla S. Daily consumption of the collagen supplement Pure Gold Collagen® reduces visible signs of aging. Clin Interv Aging. 2014 Oct 13;9:1747-58. doi: 10.2147/CIA.S65939. Erratum in: Clin Interv Aging. 2020 Feb 04;15:131. PMID: 25342893; PMCID: PMC4206255. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206255/

Hexsel D, Zague V, Schunck M, Siega C, Camozzato FO, Oesser S. Oral supplementation with specific bioactive collagen peptides improves nail growth and reduces symptoms of brittle nails. J Cosmet Dermatol. 2017 Dec;16(4):520-526. doi: 10.1111/jocd.12393. Epub 2017 Aug 8. PMID: 28786550. https://pubmed.ncbi.nlm.nih.gov/28786550/

Rubio IG, Castro G, Zanini AC, Medeiros-Neto G. Oral ingestion of a hydrolyzed gelatin meal in subjects with normal weight and in obese patients: Postprandial effect on circulating gut peptides, glucose and insulin. Eat Weight Disord. 2008 Mar;13(1):48-53. doi: 10.1007/BF03327784. PMID: 18319637. https://pubmed.ncbi.nlm.nih.gov/18319637/

Tomosugi N, Yamamoto S, Takeuchi M, Yonekura H, Ishigaki Y, Numata N, Katsuda S, Sakai Y. Effect of Collagen Tripeptide on Atherosclerosis in Healthy Humans. J Atheroscler Thromb. 2017 May 1;24(5):530-538. doi: 10.5551/jat.36293. Epub 2016 Oct 6. PMID: 27725401; PMCID: PMC5429168. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429168/

Moon J, Koh G. Clinical Evidence and Mechanisms of High-Protein Diet-Induced Weight Loss. J Obes Metab Syndr. 2020 Sep 30;29(3):166-173. doi: 10.7570/jomes20028. PMID: 32699189; PMCID: PMC7539343. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539343/

Douglas Paddon-Jones, Eric Westman, Richard D Mattes, Robert R Wolfe, Arne Astrup, Margriet Westerterp-Plantenga, Protein, weight management, and satiety, The American Journal of Clinical Nutrition, Volume 87, Issue 5, May 2008, Pages 1558S–1561S, https://doi.org/10.1093/ajcn/87.5.1558S. https://academic.oup.com/ajcn/article/87/5/1558S/4650426

Zdzieblik, D., Oesser, S., Baumstark, M., Gollhofer, A., & König, D. (2015). Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: A randomised controlled trial. British Journal of Nutrition, 114(8), 1237-1245. doi:10.1017/S0007114515002810. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/collagen-peptide-supplementation-in-combination-with-resistance-training-improves-body-composition-and-increases-muscle-strength-in-elderly-sarcopenic-men-a-randomised-controlled-trial/9426E375742D094F91029FD0364815C4

Chiang TI, Chang IC, Lee HH, Hsieh KH, Chiu YW, Lai TJ, Liu JY, Hsu LS, Kao SH. Amelioration of estrogen deficiency-induced obesity by collagen hydrolysate. Int J Med Sci. 2016 Oct 19;13(11):853-857. doi: 10.7150/ijms.16706. PMID: 27877077; PMCID: PMC5118756. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118756/

Bolke L, Schlippe G, Gerß J, Voss W. A Collagen Supplement Improves Skin Hydration, Elasticity, Roughness, and Density: Results of a Randomized, Placebo-Controlled, Blind Study. Nutrients. 2019 Oct 17;11(10):2494. doi: 10.3390/nu11102494. PMID: 31627309; PMCID: PMC6835901. https://pubmed.ncbi.nlm.nih.gov/31627309/

Schauss AG, Stenehjem J, Park J, Endres JR, Clewell A. Effect of the novel low molecular weight hydrolyzed chicken sternal cartilage extract, BioCell Collagen, on improving osteoarthritis-related symptoms: a randomized, double-blind, placebo-controlled trial. J Agric Food Chem. 2012 Apr 25;60(16):4096-101. doi: 10.1021/jf205295u. Epub 2012 Apr 16. PMID: 22486722. https://pubmed.ncbi.nlm.nih.gov/22486722/

Elam ML, Johnson SA, Hooshmand S, Feresin RG, Payton ME, Gu J, Arjmandi BH. A calcium-collagen chelate dietary supplement attenuates bone loss in postmenopausal women with osteopenia: a randomized controlled trial. J Med Food. 2015 Mar;18(3):324-31. doi: 10.1089/jmf.2014.0100. Epub 2014 Oct 14. PMID: 25314004. https://pubmed.ncbi.nlm.nih.gov/25314004/

Báez, J., Olsen, D. & Polarek, J.W. Recombinant microbial systems for the production of human collagen and gelatin. Appl Microbiol Biotechnol 69, 245–252 (2005). https://doi.org/10.1007/s00253-005-0180-x https://link.springer.com/article/10.1007/s00253-005-0180-x

Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol. 2012 Jul 1;4(3):253-8. doi: 10.4161/derm.21923. PMID: 23467280; PMCID: PMC3583886. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583886/

Kogan G, Soltés L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007 Jan;29(1):17-25. doi: 10.1007/s10529-006-9219-z. Epub 2006 Nov 8. PMID: 17091377. https://pubmed.ncbi.nlm.nih.gov/17091377/

Simpson RM, Meran S, Thomas D, Stephens P, Bowen T, Steadman R, Phillips A. Age-related changes in pericellular hyaluronan organization leads to impaired dermal fibroblast to myofibroblast differentiation. Am J Pathol. 2009 Nov;175(5):1915-28. doi: 10.2353/ajpath.2009.090045. Epub 2009 Oct 1. PMID: 19808648; PMCID: PMC2774056. https://pubmed.ncbi.nlm.nih.gov/19808648/

Kawada C, Yoshida T, Yoshida H, Matsuoka R, Sakamoto W, Odanaka W, Sato T, Yamasaki T, Kanemitsu T, Masuda Y, Urushibata O. Ingested hyaluronan moisturizes dry skin. Nutr J. 2014 Jul 11;13:70. doi: 10.1186/1475-2891-13-70. PMID: 25014997; PMCID: PMC4110621. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110621/

Oe M, Sakai S, Yoshida H, Okado N, Kaneda H, Masuda Y, Urushibata O. Oral hyaluronan relieves wrinkles: a double-blinded, placebo-controlled study over a 12-week period. Clin Cosmet Investig Dermatol. 2017 Jul 18;10:267-273. doi: 10.2147/CCID.S141845. PMID: 28761365; PMCID: PMC5522662. https://pubmed.ncbi.nlm.nih.gov/28761365/

Jegasothy SM, Zabolotniaia V, Bielfeldt S. Efficacy of a New Topical Nano-hyaluronic Acid in Humans. J Clin Aesthet Dermatol. 2014 Mar;7(3):27-9. PMID: 24688623; PMCID: PMC3970829. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970829/

Pavicic T, Gauglitz GG, Lersch P, Schwach-Abdellaoui K, Malle B, Korting HC, Farwick M. Efficacy of cream-based novel formulations of hyaluronic acid of different molecular weights in anti-wrinkle treatment. J Drugs Dermatol. 2011 Sep;10(9):990-1000. PMID: 22052267. https://pubmed.ncbi.nlm.nih.gov/22052267/

Draelos ZD. A clinical evaluation of the comparable efficacy of hyaluronic acid-based foam and ceramide-containing emulsion cream in the treatment of mild-to-moderate atopic dermatitis. J Cosmet Dermatol. 2011 Sep;10(3):185-8. doi: 10.1111/j.1473-2165.2011.00568.x. PMID: 21896129. https://pubmed.ncbi.nlm.nih.gov/21896129/

Manna F, Dentini M, Desideri P, De Pità O, Mortilla E, Maras B. Comparative chemical evaluation of two commercially available derivatives of hyaluronic acid (hylaform from rooster combs and restylane from streptococcus) used for soft tissue augmentation. J Eur Acad Dermatol Venereol. 1999 Nov;13(3):183-92. PMID: 10642054. https://pubmed.ncbi.nlm.nih.gov/10642054/

Kerscher M, Bayrhammer J, Reuther T. Rejuvenating influence of a stabilized hyaluronic acid-based gel of nonanimal origin on facial skin aging. Dermatol Surg. 2008 May;34(5):720-6. doi: 10.1111/j.1524-4725.2008.34176.x. Epub 2008 Apr 1. PMID: 18384619. https://pubmed.ncbi.nlm.nih.gov/18384619/

Tashiro T, Seino S, Sato T, Matsuoka R, Masuda Y, Fukui N. Oral administration of polymer hyaluronic acid alleviates symptoms of knee osteoarthritis: a double-blind, placebo-controlled study over a 12-month period. ScientificWorldJournal. 2012;2012:167928. doi: 10.1100/2012/167928. Epub 2012 Nov 20. PMID: 23226979; PMCID: PMC3512263. https://pubmed.ncbi.nlm.nih.gov/23226979/

Oe M, Tashiro T, Yoshida H, Nishiyama H, Masuda Y, Maruyama K, Koikeda T, Maruya R, Fukui N. Oral hyaluronan relieves knee pain: a review. Nutr J. 2016 Jan 27;15:11. doi: 10.1186/s12937-016-0128-2. PMID: 26818459; PMCID: PMC4729158. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729158/

Jensen GS, Attridge VL, Lenninger MR, Benson KF. Oral intake of a liquid high-molecular-weight hyaluronan associated with relief of chronic pain and reduced use of pain medication: results of a randomized, placebo-controlled double-blind pilot study. J Med Food. 2015 Jan;18(1):95-101. doi: 10.1089/jmf.2013.0174. PMID: 25415767; PMCID: PMC4281855. https://pubmed.ncbi.nlm.nih.gov/25415767/

Bowman S, Awad ME, Hamrick MW, Hunter M, Fulzele S. Recent advances in hyaluronic acid based therapy for osteoarthritis. Clin Transl Med. 2018 Feb 16;7(1):6. doi: 10.1186/s40169-017-0180-3. PMID: 29450666; PMCID: PMC5814393. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814393/

Stancíková M, Svík K, Istok R, Rovenský J, Velebný V. The effects of hyaluronan on bone resorption and bone mineral density in a rat model of estrogen deficiency-induced osteopenia. Int J Tissue React. 2004;26(1-2):9-16. PMID: 15573687. https://pubmed.ncbi.nlm.nih.gov/15573687/

Ma J, Granton PV, Holdsworth DW, Turley EA. Oral administration of hyaluronan reduces bone turnover in ovariectomized rats. J Agric Food Chem. 2013 Jan 16;61(2):339-45. doi: 10.1021/jf300651d. Epub 2013 Jan 8. PMID: 23256527.https://pubmed.ncbi.nlm.nih.gov/23256527/

Huang L, Cheng YY, Koo PL, Lee KM, Qin L, Cheng JC, Kumta SM. The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. J Biomed Mater Res A. 2003 Sep 15;66(4):880-4. doi: 10.1002/jbm.a.10535. PMID: 12926041. https://pubmed.ncbi.nlm.nih.gov/12926041/

Lajeunesse D, Delalandre A, Martel-Pelletier J, Pelletier JP. Hyaluronic acid reverses the abnormal synthetic activity of human osteoarthritic subchondral bone osteoblasts. Bone. 2003 Oct;33(4):703-10. doi: 10.1016/s8756-3282(03)00206-0. PMID: 14555276. https://pubmed.ncbi.nlm.nih.gov/14555276/

Fearon WR. The carbamido diacetyl reaction: a test for citrulline. Biochem J. 1939 Jun;33(6):902-7. doi: 10.1042/bj0330902. PMID: 16746990; PMCID: PMC1264464. https://pubmed.ncbi.nlm.nih.gov/16746990/

Bahri S, Zerrouk N, Aussel C, Moinard C, Crenn P, Curis E, Chaumeil JC, Cynober L, Sfar S. Citrulline: from metabolism to therapeutic use. Nutrition. 2013 Mar;29(3):479-84. doi: 10.1016/j.nut.2012.07.002. Epub 2012 Sep 28. PMID: 23022123. https://pubmed.ncbi.nlm.nih.gov/23022123/

Figueroa A, Wong A, Jaime SJ, Gonzales JU. Influence of L-citrulline and watermelon supplementation on vascular function and exercise performance. Curr Opin Clin Nutr Metab Care. 2017 Jan;20(1):92-98. doi: 10.1097/MCO.0000000000000340. PMID: 27749691. https://pubmed.ncbi.nlm.nih.gov/27749691/

Breuillard C, Cynober L, Moinard C. Citrulline and nitrogen homeostasis: an overview. Amino Acids. 2015 Apr;47(4):685-91. doi: 10.1007/s00726-015-1932-2. Epub 2015 Feb 13. PMID: 25676932. https://pubmed.ncbi.nlm.nih.gov/25676932/

Chopra S, Baby C, Jacob JJ. Neuro-endocrine regulation of blood pressure. Indian J Endocrinol Metab. 2011 Oct;15 Suppl 4(Suppl4):S281-8. doi: 10.4103/2230-8210.86860. PMID: 22145130; PMCID: PMC3230096. https://pubmed.ncbi.nlm.nih.gov/22145130/

Jourdan M, Nair KS, Carter RE, Schimke J, Ford GC, Marc J, Aussel C, Cynober L. Citrulline stimulates muscle protein synthesis in the post-absorptive state in healthy people fed a low-protein diet - A pilot study. Clin Nutr. 2015 Jun;34(3):449-56. doi: 10.1016/j.clnu.2014.04.019. Epub 2014 May 4. PMID: 24972455; PMCID: PMC4309748. https://pubmed.ncbi.nlm.nih.gov/24972455/

Romero MJ, Platt DH, Caldwell RB, Caldwell RW. Therapeutic use of citrulline in cardiovascular disease. Cardiovasc Drug Rev. 2006 Fall-Winter;24(3-4):275-90. doi: 10.1111/j.1527-3466.2006.00275.x. PMID: 17214603. https://pubmed.ncbi.nlm.nih.gov/17214603/

Morita M, Sakurada M, Watanabe F, Yamasaki T, Doi H, Ezaki H, Morishita K, Miyakex T. Effects of Oral L-Citrulline Supplementation on Lipoprotein Oxidation and Endothelial Dysfunction in Humans with Vasospastic Angina. Immunol Endocr Metab Agents Med Chem. 2013 Sep;13(3):214-220. doi: 10.2174/18715222113139990008. PMID: 26005507; PMCID: PMC4435567. https://pubmed.ncbi.nlm.nih.gov/26005507/

Ochiai M, Hayashi T, Morita M, Ina K, Maeda M, Watanabe F, Morishita K. Short-term effects of L-citrulline supplementation on arterial stiffness in middle-aged men. Int J Cardiol. 2012 Mar 8;155(2):257-61. doi: 10.1016/j.ijcard.2010.10.004. Epub 2010 Nov 9. PMID: 21067832. https://pubmed.ncbi.nlm.nih.gov/21067832/

Kim IY, Schutzler SE, Schrader A, Spencer HJ, Azhar G, Deutz NE, Wolfe RR. Acute ingestion of citrulline stimulates nitric oxide synthesis but does not increase blood flow in healthy young and older adults with heart failure. Am J Physiol Endocrinol Metab. 2015 Dec 1;309(11):E915-24. doi: 10.1152/ajpendo.00339.2015. Epub 2015 Oct 6. PMID: 26442881; PMCID: PMC4669336. https://pubmed.ncbi.nlm.nih.gov/26442881/

Sureda A, Córdova A, Ferrer MD, Pérez G, Tur JA, Pons A. L-citrulline-malate influence over branched chain amino acid utilization during exercise. Eur J Appl Physiol. 2010 Sep;110(2):341-51. doi: 10.1007/s00421-010-1509-4. Epub 2010 May 25. PMID: 20499249. https://pubmed.ncbi.nlm.nih.gov/20499249/

Schoenfeld BJ. Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design. J Strength Cond Res. 2013 Jun;27(6):1720-30. doi: 10.1519/JSC.0b013e31828ddd53. PMID: 23442269. https://pubmed.ncbi.nlm.nih.gov/23442269/

Cormio L, De Siati M, Lorusso F, Selvaggio O, Mirabella L, Sanguedolce F, Carrieri G. Oral L-citrulline supplementation improves erection hardness in men with mild erectile dysfunction. Urology. 2011 Jan;77(1):119-22. doi: 10.1016/j.urology.2010.08.028. PMID: 21195829. https://pubmed.ncbi.nlm.nih.gov/21195829/

Bailey SJ, Blackwell JR, Lord T, Vanhatalo A, Winyard PG, Jones AM. l-Citrulline supplementation improves O2 uptake kinetics and high-intensity exercise performance in humans. J Appl Physiol (1985). 2015 Aug 15;119(4):385-95. doi: 10.1152/japplphysiol.00192.2014. Epub 2015 May 28. PMID: 26023227. https://pubmed.ncbi.nlm.nih.gov/26023227/

Suzuki T, Morita M, Kobayashi Y, Kamimura A. Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study. J Int Soc Sports Nutr. 2016 Feb 19;13:6. doi: 10.1186/s12970-016-0117-z. PMID: 26900386; PMCID: PMC4759860. https://pubmed.ncbi.nlm.nih.gov/26900386/

Pérez-Guisado J, Jakeman PM. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J Strength Cond Res. 2010 May;24(5):1215-22. doi: 10.1519/JSC.0b013e3181cb28e0. PMID: 20386132. https://pubmed.ncbi.nlm.nih.gov/20386132/

Wax B, Kavazis AN, Weldon K, Sperlak J. Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weightlifters. J Strength Cond Res. 2015 Mar;29(3):786-92. doi: 10.1519/JSC.0000000000000670. PMID: 25226311. https://pubmed.ncbi.nlm.nih.gov/25226311/

Elaine Cristina Faria Abrahão Machado, Letícia Ambrosano, Renan Lage, Beatrice Martinez Zugaib Abdalla, Adilson Costa, Chapter 23 - Nutraceuticals for Healthy Skin Aging, Editor(s): Ronald Ross Watson, Nutrition and Functional Foods for Healthy Aging, Academic Press, 2017, Pages 273-281, ISBN 9780128053768, https://doi.org/10.1016/B978-0-12-805376-8.00023-X. https://www.sciencedirect.com/science/article/pii/B978012805376800023X

Krishnaveni M, Mirunalini S. Therapeutic potential of Phyllanthus emblica (amla): the ayurvedic wonder. J Basic Clin Physiol Pharmacol. 2010;21(1):93-105. doi: 10.1515/jbcpp.2010.21.1.93. PMID: 20506691. https://pubmed.ncbi.nlm.nih.gov/20506691/

Pientaweeratch S, Panapisal V, Tansirikongkol A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications. Pharm Biol. 2016 Sep;54(9):1865-72. doi: 10.3109/13880209.2015.1133658. Epub 2016 Feb 24. PMID: 26912420. https://pubmed.ncbi.nlm.nih.gov/26912420/

Jadoon S, Karim S, Bin Asad MH, Akram MR, Khan AK, Malik A, Chen C, Murtaza G. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity. Oxid Med Cell Longev. 2015;2015:709628. doi: 10.1155/2015/709628. Epub 2015 Sep 10. PMID: 26448818; PMCID: PMC4581564. https://pubmed.ncbi.nlm.nih.gov/26448818/

Kumar N, Rungseevijitprapa W, Narkkhong NA, Suttajit M, Chaiyasut C. 5α-reductase inhibition and hair growth promotion of some Thai plants traditionally used for hair treatment. J Ethnopharmacol. 2012 Feb 15;139(3):765-71. doi: 10.1016/j.jep.2011.12.010. Epub 2011 Dec 13. PMID: 22178180. https://pubmed.ncbi.nlm.nih.gov/22178180/

Rajak S, Banerjee SK, Sood S, Dinda AK, Gupta YK, Gupta SK, Maulik SK. Emblica officinalis causes myocardial adaptation and protects against oxidative stress in ischemic-reperfusion injury in rats. Phytother Res. 2004 Jan;18(1):54-60. doi: 10.1002/ptr.1367. PMID: 14750202. https://pubmed.ncbi.nlm.nih.gov/14750202/

Patil BS, Kanthe PS, Reddy CR, Das KK. Emblica officinalis (Amla) Ameliorates High-Fat Diet Induced Alteration of Cardiovascular Pathophysiology. Cardiovasc Hematol Agents Med Chem. 2019;17(1):52-63. doi: 10.2174/1871525717666190409120018. PMID: 30963985; PMCID: PMC6864597. https://pubmed.ncbi.nlm.nih.gov/30963985/

Patel SS, Goyal RK. Prevention of diabetes-induced myocardial dysfunction in rats using the juice of the Emblica officinalis fruit. Exp Clin Cardiol. 2011 Fall;16(3):87-91. PMID: 22065939; PMCID: PMC3209545. https://pubmed.ncbi.nlm.nih.gov/22065939/

Usharani P, Fatima N, Muralidhar N. Effects of Phyllanthus emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, controlled study. Diabetes Metab Syndr Obes. 2013 Jul 26;6:275-84. doi: 10.2147/DMSO.S46341. PMID: 23935377; PMCID: PMC3735284. https://pubmed.ncbi.nlm.nih.gov/23935377/

Antony B, Benny M, Kaimal TN. A Pilot clinical study to evaluate the effect of Emblica officinalis extract (Amlamax™) on markers of systemic inflammation and dyslipidemia. Indian J Clin Biochem. 2008 Oct;23(4):378-81. doi: 10.1007/s12291-008-0083-6. Epub 2008 Dec 20. PMID: 23105791; PMCID: PMC3453138. https://pubmed.ncbi.nlm.nih.gov/23105791/

Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem. 2000 Oct;48(10):4581-9. doi: 10.1021/jf000404a. PMID: 11052704. https://pubmed.ncbi.nlm.nih.gov/11052704/

Colombo E, Sangiovanni E, Dell'agli M. A review on the anti-inflammatory activity of pomegranate in the gastrointestinal tract. Evid Based Complement Alternat Med. 2013;2013:247145. doi: 10.1155/2013/247145. Epub 2013 Mar 14. PMID: 23573120; PMCID: PMC3612487. https://pubmed.ncbi.nlm.nih.gov/23573120/

Costantini S, Rusolo F, De Vito V, Moccia S, Picariello G, Capone F, Guerriero E, Castello G, Volpe MG. Potential anti-inflammatory effects of the hydrophilic fraction of pomegranate (Punica granatum L.) seed oil on breast cancer cell lines. Molecules. 2014 Jun 24;19(6):8644-60. doi: 10.3390/molecules19068644. PMID: 24962397; PMCID: PMC6271692. https://pubmed.ncbi.nlm.nih.gov/24962397/

Adams LS, Seeram NP, Aggarwal BB, Takada Y, Sand D, Heber D. Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. J Agric Food Chem. 2006 Feb 8;54(3):980-5. doi: 10.1021/jf052005r. PMID: 16448212. https://pubmed.ncbi.nlm.nih.gov/16448212/

Asgary, S., Sahebkar, A., Afshani, M.R., Keshvari, M., Haghjooyjavanmard, S. and Rafieian-Kopaei, M. (2014), Clinical Evaluation of Blood Pressure Lowering, Endothelial Function Improving, Hypolipidemic and Anti-Inflammatory Effects of Pomegranate Juice in Hypertensive Subjects. Phytother. Res., 28: 193-199. https://doi.org/10.1002/ptr.4977

Stowe CB. The effects of pomegranate juice consumption on blood pressure and cardiovascular health. Complement Ther Clin Pract. 2011 May;17(2):113-5. doi: 10.1016/j.ctcp.2010.09.004. PMID: 21457902. https://pubmed.ncbi.nlm.nih.gov/21457902/

Asgary S, Keshvari M, Sahebkar A, Hashemi M, Rafieian-Kopaei M. Clinical investigation of the acute effects of pomegranate juice on blood pressure and endothelial function in hypertensive individuals. ARYA Atheroscler. 2013 Nov;9(6):326-31. PMID: 24575134; PMCID: PMC3933059. https://pubmed.ncbi.nlm.nih.gov/24575134/

Ahmed S, Wang N, Hafeez BB, Cheruvu VK, Haqqi TM. Punica granatum L. extract inhibits IL-1beta-induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-kappaB in human chondrocytes in vitro. J Nutr. 2005 Sep;135(9):2096-102. doi: 10.1093/jn/135.9.2096. PMID: 16140882; PMCID: PMC1315308. https://pubmed.ncbi.nlm.nih.gov/16140882/

Rasheed Z, Akhtar N, Haqqi TM. Pomegranate extract inhibits the interleukin-1β-induced activation of MKK-3, p38α-MAPK and transcription factor RUNX-2 in human osteoarthritis chondrocytes. Arthritis Res Ther. 2010;12(5):R195. doi: 10.1186/ar3166. Epub 2010 Oct 18. PMID: 20955562; PMCID: PMC2991031. https://pubmed.ncbi.nlm.nih.gov/20955562/

Hadipour-Jahromy M, Mozaffari-Kermani R. Chondroprotective effects of pomegranate juice on monoiodoacetate-induced osteoarthritis of the knee joint of mice. Phytother Res. 2010 Feb;24(2):182-5. doi: 10.1002/ptr.2880. PMID: 19504467. https://pubmed.ncbi.nlm.nih.gov/19504467/

Shuid AN, Mohamed IN. Pomegranate use to attenuate bone loss in major musculoskeletal diseases: an evidence-based review. Curr Drug Targets. 2013 Dec;14(13):1565-78. doi: 10.2174/1389450114666131108155039. PMID: 24200293. https://pubmed.ncbi.nlm.nih.gov/24200293/

Trexler ET, Smith-Ryan AE, Melvin MN, Roelofs EJ, Wingfield HL. Effects of pomegranate extract on blood flow and running time to exhaustion. Appl Physiol Nutr Metab. 2014 Sep;39(9):1038-42. doi: 10.1139/apnm-2014-0137. Epub 2014 May 16. PMID: 25051173; PMCID: PMC4146683. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146683/

Khan N, Mukhtar H. Tea and health: studies in humans. Curr Pharm Des. 2013;19(34):6141-7. doi: 10.2174/1381612811319340008. PMID: 23448443; PMCID: PMC4055352. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055352/

Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial Properties of Green Tea Catechins. Int J Mol Sci. 2020 Mar 4;21(5):1744. doi: 10.3390/ijms21051744. PMID: 32143309; PMCID: PMC7084675. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084675/

Stagos D. Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants (Basel). 2019 Dec 24;9(1):19. doi: 10.3390/antiox9010019. PMID: 31878236; PMCID: PMC7022939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022939/

Vuong QV, Bowyer MC, Roach PD. L-Theanine: properties, synthesis and isolation from tea. J Sci Food Agric. 2011 Aug 30;91(11):1931-9. doi: 10.1002/jsfa.4373. Epub 2011 Mar 29. PMID: 21735448. https://pubmed.ncbi.nlm.nih.gov/21735448/

Williams J, Sergi D, McKune AJ, Georgousopoulou EN, Mellor DD, Naumovski N. The beneficial health effects of green tea amino acid l-theanine in animal models: Promises and prospects for human trials. Phytother Res. 2019 Mar;33(3):571-583. doi: 10.1002/ptr.6277. Epub 2019 Jan 10. PMID: 30632212. https://pubmed.ncbi.nlm.nih.gov/30632212/

Koch W, Zagórska J, Marzec Z, Kukula-Koch W. Applications of Tea (Camellia sinensis) and its Active Constituents in Cosmetics. Molecules. 2019 Nov 24;24(23):4277. doi: 10.3390/molecules24234277. PMID: 31771249; PMCID: PMC6930595. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930595/

Heinrich U, Moore CE, De Spirt S, Tronnier H, Stahl W. Green tea polyphenols provide photoprotection, increase microcirculation, and modulate skin properties of women. J Nutr. 2011 Jun;141(6):1202-8. doi: 10.3945/jn.110.136465. Epub 2011 Apr 27. PMID: 21525260. https://pubmed.ncbi.nlm.nih.gov/21525260/

Saeed M, Khan MS, Kamboh AA, Alagawany M, Khafaga AF, Noreldin AE, Qumar M, Safdar M, Hussain M, Abd El-Hack ME, Chao S. L-theanine: an astounding sui generis amino acid in poultry nutrition. Poult Sci. 2020 Nov;99(11):5625-5636. doi: 10.1016/j.psj.2020.07.016. Epub 2020 Aug 6. PMID: 33142480; PMCID: PMC7647716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647716/

Williams JL, Everett JM, D'Cunha NM, Sergi D, Georgousopoulou EN, Keegan RJ, McKune AJ, Mellor DD, Anstice N, Naumovski N. The Effects of Green Tea Amino Acid L-Theanine Consumption on the Ability to Manage Stress and Anxiety Levels: a Systematic Review. Plant Foods Hum Nutr. 2020 Mar;75(1):12-23. doi: 10.1007/s11130-019-00771-5. PMID: 31758301. https://pubmed.ncbi.nlm.nih.gov/31758301/

Nobre AC, Rao A, Owen GN. L-theanine, a natural constituent in tea, and its effect on mental state. Asia Pac J Clin Nutr. 2008;17 Suppl 1:167-8. PMID: 18296328. https://pubmed.ncbi.nlm.nih.gov/18296328/

Williams, Jackson, Jane Kellett, Paul D. Roach, Andrew McKune, Duane Mellor, Jackson Thomas, and Nenad Naumovski. 2016. "l-Theanine as a Functional Food Additive: Its Role in Disease Prevention and Health Promotion" Beverages 2, no. 2: 13. https://doi.org/10.3390/beverages2020013

Aboulwafa MM, Youssef FS, Gad HA, Altyar AE, Al-Azizi MM, Ashour ML. A Comprehensive Insight on the Health Benefits and Phytoconstituents of Camellia sinensis and Recent Approaches for Its Quality Control. Antioxidants (Basel). 2019 Oct 6;8(10):455. doi: 10.3390/antiox8100455. PMID: 31590466; PMCID: PMC6826564. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826564/

Ramadan G, El-Beih NM, Talaat RM, Abd El-Ghffar EA. Anti-inflammatory activity of green versus black tea aqueous extract in a rat model of human rheumatoid arthritis. Int J Rheum Dis. 2017 Feb;20(2):203-213. doi: 10.1111/1756-185X.12666. Epub 2015 May 12. PMID: 25964045. https://pubmed.ncbi.nlm.nih.gov/25964045/

Huang HT, Cheng TL, Lin SY, Ho CJ, Chyu JY, Yang RS, Chen CH, Shen CL. Osteoprotective Roles of Green Tea Catechins. Antioxidants (Basel). 2020 Nov 16;9(11):1136. doi: 10.3390/antiox9111136. PMID: 33207822; PMCID: PMC7696448. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696448/

Ma ZF, Zhang H. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review. Antioxidants (Basel). 2017 Sep 15;6(3):71. doi: 10.3390/antiox6030071. PMID: 28914789; PMCID: PMC5618099. https://pubmed.ncbi.nlm.nih.gov/28914789/

Yang J, Xiao YY. Grape phytochemicals and associated health benefits. Crit Rev Food Sci Nutr. 2013;53(11):1202-25. doi: 10.1080/10408398.2012.692408. PMID: 24007424. https://pubmed.ncbi.nlm.nih.gov/24007424/

Cádiz-Gurrea ML, Borrás-Linares I, Lozano-Sánchez J, Joven J, Fernández-Arroyo S, Segura-Carretero A. Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins. Int J Mol Sci. 2017 Feb 10;18(2):376. doi: 10.3390/ijms18020376. PMID: 28208630; PMCID: PMC5343911. https://pubmed.ncbi.nlm.nih.gov/28208630/

Zhang H, Liu S, Li L, Liu S, Liu S, Mi J, Tian G. The impact of grape seed extract treatment on blood pressure changes: A meta-analysis of 16 randomized controlled trials. Medicine (Baltimore). 2016 Aug;95(33):e4247. doi: 10.1097/MD.0000000000004247. PMID: 27537554; PMCID: PMC5370781. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370781/

Park E, Edirisinghe I, Choy YY, Waterhouse A, Burton-Freeman B. Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: a randomised, double-blinded, two-arm, parallel, placebo-controlled trial. Br J Nutr. 2016 Jan 28;115(2):226-38. doi: 10.1017/S0007114515004328. Epub 2015 Nov 16. PMID: 26568249. https://pubmed.ncbi.nlm.nih.gov/26568249/

Shenoy SF, Keen CL, Kalgaonkar S, Polagruto JA. Effects of grape seed extract consumption on platelet function in postmenopausal women. Thromb Res. 2007;121(3):431-2. doi: 10.1016/j.thromres.2007.09.004. Epub 2007 Oct 24. PMID: 17950783. https://pubmed.ncbi.nlm.nih.gov/17950783/

Sano A, Tokutake S, Seo A. Proanthocyanidin-rich grape seed extract reduces leg swelling in healthy women during prolonged sitting. J Sci Food Agric. 2013 Feb;93(3):457-62. doi: 10.1002/jsfa.5773. Epub 2012 Jul 2. PMID: 22752876. https://pubmed.ncbi.nlm.nih.gov/22752876/

Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014 Aug;5(8):927-46. PMID: 25489440; PMCID: PMC4258672. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258672/

Aloui F, Charradi K, Hichami A, Subramaniam S, Khan NA, Limam F, Aouani E. Grape seed and skin extract reduces pancreas lipotoxicity, oxidative stress and inflammation in high fat diet fed rats. Biomed Pharmacother. 2016 Dec;84:2020-2028. doi: 10.1016/j.biopha.2016.11.017. Epub 2016 Nov 12. PMID: 27847215. https://pubmed.ncbi.nlm.nih.gov/27847215/

El Ayed M, Kadri S, Smine S, Elkahoui S, Limam F, Aouani E. Protective effects of grape seed and skin extract against high-fat-diet-induced lipotoxicity in rat lung. Lipids Health Dis. 2017 Sep 13;16(1):174. doi: 10.1186/s12944-017-0561-z. PMID: 28903761; PMCID: PMC5598067. https://pubmed.ncbi.nlm.nih.gov/28903761/

Charradi K, Elkahoui S, Karkouch I, Limam F, Ben Hassine F, El May MV, Aouani E. Protective effect of grape seed and skin extract against high-fat diet-induced liver steatosis and zinc depletion in rat. Dig Dis Sci. 2014 Aug;59(8):1768-78. doi: 10.1007/s10620-014-3128-0. Epub 2014 Apr 6. PMID: 24705696. https://pubmed.ncbi.nlm.nih.gov/24705696/

Sano A, Uchida R, Saito M, Shioya N, Komori Y, Tho Y, Hashizume N. Beneficial effects of grape seed extract on malondialdehyde-modified LDL. J Nutr Sci Vitaminol (Tokyo). 2007 Apr;53(2):174-82. doi: 10.3177/jnsv.53.174. PMID: 17616006. https://pubmed.ncbi.nlm.nih.gov/17616006/

Vigna GB, Costantini F, Aldini G, Carini M, Catapano A, Schena F, Tangerini A, Zanca R, Bombardelli E, Morazzoni P, Mezzetti A, Fellin R, Maffei Facino R. Effect of a standardized grape seed extract on low-density lipoprotein susceptibility to oxidation in heavy smokers. Metabolism. 2003 Oct;52(10):1250-7. doi: 10.1016/s0026-0495(03)00192-6. PMID: 14564675. https://pubmed.ncbi.nlm.nih.gov/14564675/

Natella F, Belelli F, Gentili V, Ursini F, Scaccini C. Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. J Agric Food Chem. 2002 Dec 18;50(26):7720-5. doi: 10.1021/jf020346o. PMID: 12475295. https://pubmed.ncbi.nlm.nih.gov/12475295/

Safaei N, Babaei H, Azarfarin R, Jodati AR, Yaghoubi A, Sheikhalizadeh MA. Comparative effect of grape seed extract (Vitis vinifera) and ascorbic acid in oxidative stress induced by on-pump coronary artery bypass surgery. Ann Card Anaesth. 2017 Jan-Mar;20(1):45-51. doi: 10.4103/0971-9784.197834. PMID: 28074795; PMCID: PMC5290695. https://pubmed.ncbi.nlm.nih.gov/28074795/

Ishikawa M, Maki K, Tofani I, Kimura K, Kimura M. Grape seed proanthocyanidins extract promotes bone formation in rat's mandibular condyle. Eur J Oral Sci. 2005 Feb;113(1):47-52. doi: 10.1111/j.1600-0722.2004.00176.x. PMID: 15693829. https://pubmed.ncbi.nlm.nih.gov/15693829/

Yahara N, Tofani I, Maki K, Kojima K, Kojima Y, Kimura M. Mechanical assessment of effects of grape seed proanthocyanidins extract on tibial bone diaphysis in rats. J Musculoskelet Neuronal Interact. 2005 Jun;5(2):162-9. PMID: 15951633. https://pubmed.ncbi.nlm.nih.gov/15951633/

Park JS, Park MK, Oh HJ, Woo YJ, Lim MA, Lee JH, Ju JH, Jung YO, Lee ZH, Park SH, Kim HY, Cho ML, Min JK. Grape-seed proanthocyanidin extract as suppressors of bone destruction in inflammatory autoimmune arthritis. PLoS One. 2012;7(12):e51377. doi: 10.1371/journal.pone.0051377. Epub 2012 Dec 10. PMID: 23251512; PMCID: PMC3519627. https://pubmed.ncbi.nlm.nih.gov/23251512/

Ahmad SF, Zoheir KM, Abdel-Hamied HE, Ashour AE, Bakheet SA, Attia SM, Abd-Allah AR. Grape seed proanthocyanidin extract has potent anti-arthritic effects on collagen-induced arthritis by modifying the T cell balance. Int Immunopharmacol. 2013 Sep;17(1):79-87. doi: 10.1016/j.intimp.2013.05.026. Epub 2013 Jun 10. PMID: 23759204. https://pubmed.ncbi.nlm.nih.gov/23759204/

Cho ML, Heo YJ, Park MK, Oh HJ, Park JS, Woo YJ, Ju JH, Park SH, Kim HY, Min JK. Grape seed proanthocyanidin extract (GSPE) attenuates collagen-induced arthritis. Immunol Lett. 2009 Jun 4;124(2):102-10. doi: 10.1016/j.imlet.2009.05.001. Epub 2009 May 14. PMID: 19446580. https://pubmed.ncbi.nlm.nih.gov/19446580/

Grembecka M. Natural sweeteners in a human diet. Rocz Panstw Zakl Hig. 2015;66(3):195-202. PMID: 26400114. https://pubmed.ncbi.nlm.nih.gov/26400114/

Ashwell M. Stevia, Nature's Zero-Calorie Sustainable Sweetener: A New Player in the Fight Against Obesity. Nutr Today. 2015 May;50(3):129-134. doi: 10.1097/NT.0000000000000094. Epub 2015 May 14. PMID: 27471327; PMCID: PMC4890837. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890837/

Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism. 2004 Jan;53(1):73-6. doi: 10.1016/j.metabol.2003.07.013. PMID: 14681845. https://pubmed.ncbi.nlm.nih.gov/14681845/

Giacaman RA, Campos P, Muñoz-Sandoval C, Castro RJ. Cariogenic potential of commercial sweeteners in an experimental biofilm caries model on enamel. Arch Oral Biol. 2013 Sep;58(9):1116-22. doi: 10.1016/j.archoralbio.2013.03.005. Epub 2013 Apr 28. PMID: 23631998. https://pubmed.ncbi.nlm.nih.gov/23631998/

Anton SD, Martin CK, Han H, Coulon S, Cefalu WT, Geiselman P, Williamson DA. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite. 2010 Aug;55(1):37-43. doi: 10.1016/j.appet.2010.03.009. Epub 2010 Mar 18. PMID: 20303371; PMCID: PMC2900484. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900484/

Ahmad U, Ahmad RS, Arshad MS, Mushtaq Z, Hussain SM, Hameed A. Antihyperlipidemic efficacy of aqueous extract of Stevia rebaudiana Bertoni in albino rats. Lipids Health Dis. 2018 Jul 27;17(1):175. doi: 10.1186/s12944-018-0810-9. PMID: 30053819; PMCID: PMC6064095. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6064095/

Disclaimer:- These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.